Регенерация костной ткани: суть процесса

Регенерация костной ткани обусловлена биологическим процессом обновления костной структуры в организме, которая способна разрушаться в результате изнашивания, различного рода повреждений и гибели клеточных тканей.

Регенерация может быть репаративной и физиологической, когда восстановительные процессы тканевой структуры, в результате естественных возрастных изменений, в здоровом организме происходят достаточно медленно и не сопровождаются стрессовыми ситуациями.

Механизм костной регенерации

Переломы и повреждения кости, как правило, всегда сопровождаются повреждениями близлежащих мягких тканей, что провоцирует местную и общую ответную реакцию организма.

В восстановительном периоде костная ткань претерпевает ряд сложных (общих) и местных (биологических и биохимических) изменений, которые напрямую зависят от таких факторов, как возраст пострадавшего, нарушение кровоснабжения ткани, качества лечебных мероприятий и состояния иммунной системы пациента.

Механизм репаративных и физиологических регенераций протекает с общими закономерностями. Усиленное физиологическое восстановление тканей в той или иной мере пересекается с репаративными регенерациями.

Репаративный процесс предусматривает регенерацию потерянной в результате травмы или поврежденной ткани. В этих случаях качество и степень восстановительного процесса незначительно отличаются друг от друга.

Например, при поражении нервной и мышечной ткани способность к ее полному восстановлению значительно ниже, чем костной, и чаще всего анатомически замещается образовавшимся соединительным рубцом.

При повреждении костных тканей происходит поэтапный репаративный процесс с восстановлением анатомической формы, гистологической структуры и функциональности кости.

Главным принципом ремоделирования является не только восстановление после различных травм и повреждений, но и разрушение костной ткани, что обусловлено естественными процессами, происходящими в здоровом организме для удаления старой ткани и формирования новой. Полный цикл ремоделирования в среднем составляет от 40 до 180 дней.

Основные источники регенерации

Нормализация целостности ткани происходит при помощи клеточной пролиферации (рост клеток), в первую очередь, остеогенного (внутреннего) слоя надкостницы и эндоста (тонкой соединительнотканной оболочки, выстилающей полость костного мозга).

Регенерация костной ткани: суть процесса Клетки, участвующие в тканевой костной регенерации

Современное представление о регенерации костных тканей сочетает в себе метапластическую (превращение клеток других тканей эндометрий при определенных условиях) и неопластическую (новый рост) теории. Такие процессы могут развиваться в остеоцитах, остеобластах, фибробластах, лимфоцитарных, эритроцитарных и других преостеогенных клетках.

Стадии восстановления

Восстановительный цикл условно разделяется на 4 этапа:

  1. начальная стадия сопровождается репродукцией (выработкой) элементов клеток, обусловленной действием продуктов некробиоза и некроза в поврежденных клетках и тканях. На этом этапе важно образование костной мозоли и нормализация процесса кровообращения в месте повреждений (травмы, переломов и т.д.);
  2. на второй стадии осуществляется образование тканевой структуры, что обеспечивается действием анаболических гормонов. Клетки кости образуют специфическую основу, состоящую из костного регенерата. При благоприятных условиях (отсутствие хронических болезней, хорошая иммобилизация и т.д.) образуется остеоидная ткань;
  3. третья стадия сопровождается образованием костной структуры с полным восстановлением локального кровообращения и минерализации белкового регенерата. Образованное свободное пространство между отломками тканей заполняется костными трабекулами, которые составляют пластинчатые и грубоволокнистые ткани кости. На заключительном этапе костная сеть объединяется, образуя широкий костный канал;
  4. в заключительной фазе происходит полная перестройка основы регенерата с четким выделением кортикального слоя, восстановлением костномозгового канала и четко выраженной надкостницей. Хаотичное расположение обызвествленных структур заменяется повышенным образованием напластованного регенерата.

Несмотря на то, что сращение костной ткани происходит стадийно, разделение на этапы не имеет существенного значения, потому что в результате они вполне перекрываются между собой.

Например, при идеальной фиксации и репозиции костной ткани чаще всего активизация различного вида клеток происходит практически одновременно, что значительно затрудняет разграничение стадийности репаративных процессов.

Тем не менее, при выборе оптимальной тактики лечения особенности развития стадий обязательно следует учитывать.

Регенерация при переломах

При классическом, неосложненном переломе и неподвижности костных отломков достаточно часто отмечается первичное костное сращение, начальная стадия которого сопровождается врастанием сосудов и новообразованных мезенхимальных элементов в область поражения или гематомы. В этом случае образуется мозоль, состоящая из соединительных тканей, в которой практически сразу начинает образовываться костная ткань.

Далее предварительная мозоль созревает, преобразовываясь в зрелые пластинчатые кости, что приводит к появлению истиной костной мозоли, главным отличием которой является беспорядочное расположение костных перекладин.

После выполнения костью своих функций возникает статическая нагрузка и новообразованная ткань при участии остеобластов и остеокластов подвергается перестройке.

В это время восстанавливается иннервация, васкуляризация, а также появляется костный мозг.

Регенерация костной ткани: суть процесса Этапы регенерации костной ткани после перелома

При неблагоприятных местных условиях, а также диафизарных переломах, развивается вторичное костное сращение, характеризующееся образованием между отломками костей хрящевой ткани, которая стоит в основе строения кости.

Именно поэтому вторичное сращение считается предварительно образованной костно-хрящевой мозолью, со временем превращающейся в полноценную кость.

Важно учитывать, что вторичное сращение ткани встречается намного чаще, чем первичное, но требует более длительного восстановительного периода.

При неблагоприятном течении процесса регенерация костных тканей может нарушиться. Например, задержка восстановления замедляется при инфицированных ранах, когда процесс нагноения обостряет воспалительный процесс, тем самым затормаживая регенеративное восполнение ткани.

В некоторых случаях образование первичной костно-хрящевой мозоли не преобразовывается в костную основу, сопровождаясь подвижностью сломанных осколков кости, что приводит к образованию ложного сустава.

В то же время следует учитывать, что при избыточной продукции костной ткани регенерация может сопровождаться появлением экзостозов (костных наростов).

Как правило, регенеративные процессы в хрящевой ткани развиваются неполно, в отличие от костной ткани. Замещаются только легкие дефекты за счет хондробластов, которые и создают активное вещество хрящевой ткани с последующим их преображением в хрящ. При крупных дефектах хрящей наблюдается разрастание рубцовой ткани.

Этапы регенерации могут плавно переходить друг в друга, что позволяет сделать следующие выводы:

  • для достижения идеальной фиксации и репозиции костных отломков необходимо как можно быстрее предпринять все необходимые меры до того, как возникнет дифференцировка клеток;
  • при поздней репозиции все вмешательства по корректировке обломков могут вызвать повторное разрушение капилляров регенерата и нарушения остеогенеза;
  • для стимулирования нарастания пластинчатых костей требуются функциональные нагрузки, что обязательно следует учитывать в дальнейшей терапии пациентов.

Регенерация костной ткани: суть процесса Фото несовершенного остеогенеза с характерной хрупкостью костей

Регенерация костной ткани при переломе в большей степени зависит от того, насколько сильно разрушена кость, местных условий (кровообращение, воспалительные процессы и т.д.), а также смещения отломков.

Виды репаративной регенерации костных тканей

Специалисты условно разделяют регенерацию костной ткани на определенные виды и фазы:

Первичная

Эта фаза требует создания особых условий и развивается за достаточно короткое время и заканчивается образованием интермедиарной мозоли. Первичный вид регенерации встречается чаще всего при компрессионных и забойных повреждениях костей, а также при расстоянии между обломками от 50 до 100 мкм.

Первично-замедленная

Такой вид сращения отмечается в том случае, когда неподвижные обломки плотно прижаты друг к другу, без дополнительного пространства.

Первично-замедленное сращение проходит исключительно по сосудистым каналам, что приводит к частичному сращению, в то время как полное межкостное сращивание требует совмещения костных обломков.

Многие специалисты считают такой вид репарации достаточно эффективным.

Вторичная

Вторичное сращение аналогично процессу заживления раневой поверхности мягкой ткани, однако между ними существуют отличительные особенности. Заживление ран мягкой ткани обусловлено вторичными натяжениями и, как правило, итогом становится образование рубцов.

Репарация клеток при переломе задействует весь костный материал и заканчивается образованием полноценных костей. Однако важно учитывать, что для вторичного срастания кости необходимо обеспечение надежной фиксации отломков.

При ее отсутствии или плохо проведенном подготовительном этапе клетками будут пройдены 2 фазы (фибро- и хондрогенез), после чего переломы заживут, но кость может окончательно не срастись.

Регенерация костной ткани: суть процесса Характерные смещения отломков кости

Качество проведенного лечения определяется характером образовавшейся мозоли на контрольном рентгенологическом снимке. На плохую фиксацию отломков кости указывает большой размер мозоли.

Препараты, стимулирующие восстановление

Использование стимулирующих регенерацию кости препаратов тесно взаимосвязано с определенными репаративными стадиями. Например, на начальном этапе рекомендуется прием лекарственных средств, действие которых направлено на улучшение обмена веществ и клеточной инфильтрации. Кроме того, при образовании пластинчатых костей огромное значение принадлежит нагрузкам на костные сегменты.

Для ускорения процесса восстановления структур рекомендуется применение следующих средств и методик лечения:

Советуем прочитать: Регенерация костной ткани: суть процессаПерелом костей предплечья

  • эффективным воздействием обладает локальный массаж и дозированные динамические нагрузки на травмированную конечность;
  • ИК и УВЧ, при которых направленная доза излучения способствует активизации восстановительных процессов пораженной области;
  • электрофорез с добавлением лекарственных препаратов, магнитотерапия, электростимуляция, оксибаротерапия;
  • для ускорения регенерации рекомендуются медикаментозные препараты (Цистеин, Метионин, Карбоксилин, Ретаболил, Кальцитрин, Тиреокальцитонин, витамины, и т.д.);
  • при необходимости назначается аутогемотерапия, некрогормонотерапия и т.д.

Важно учитывать, что такие способы стимуляции регенеративных процессов, как магнито- и лазеротерапия, теоретически не объяснимы, однако практика показывает их положительное воздействие на срастание поврежденных костей.

Заживление переломов губчатых костей протекает с некоторыми особенностями. Прочность (механическая) губчатых костей в большинстве случаев определяется костными балками, которые располагаются в эндостальной зоне, а не в кортикальном слое.

Оптимальными условиями регенерации губчатой костной ткани является максимальное сближение отломков кости (при вколоченном переломе).

Вколачивание костных отломков возможно при помощи компрессионного аппарата, который позволяет сопоставить костные фрагменты даже при большом расстоянии между ними.

Регенерация костной ткани: суть процесса Специальный аппарат (Пустовойта) позволяет самостоятельно дозировать нагрузку на конечности при помощи пульта управления

Периостальные мозоли во время заживления губчатых костей слабо выражены. В этом случае регенерация полностью зависит от внутренних (возрастная категория пациента, нормализация обменных процессов, гормональный статус и т.д.).

Критерии успешности регенерации

На успешность проведенных мероприятий указывают следующие показатели:

  • субъективные показатели – у пациента отсутствуют жалобы на болевую симптоматику, а также патологическую подвижность при небольших динамических и статических нагрузках и существующая возможность сохранения функциональности конечности;
  • клинические объективные тесты – при пальпации пациент не ощущает болезненности, в месте перелома отсутствует подвижность при умеренных продольных нагрузках. Кратковременная статическая нагрузка на больную конечность составляет 80% от всей величины нагрузок здоровой конечности;
  • рентгенологические критерии – отмечается отсутствие межфрагментарных щелей, близких к однородной плотной костной мозоли. При этом восстановительная стадия в костномозговом канале и кортикальном слое соответствует уровню перелома.

Необходимо учитывать, что вопрос об эффективности и необходимости стимулирования репаративных процессов с теоретической точки зрения до сих пор не решен.

Однако попытки ускорения регенерации предпринимаются до настоящего времени.

При этом важно помнить, что сращивание переломов ускоряется при благоприятных условиях (надежная фиксация обломков кости, полноценное сбалансированное питание, нормализация обменных процессов в организме и т.д.).

Читайте также:  Киста селезенки у ребенка и новорожденного: причины и лечение

При невыполнении хотя бы одного фактора репаративный процесс протекает с нарушениями, а кость, вне зависимости от вида стимуляции, может не срастись, несмотря на прилагаемые усилия. Немаловажное значение имеет своевременное обращение к врачу. Даже при небольшом повреждении кости требуется тщательная диагностика и последующее контролирование процесса регенерации костной ткани.

Регенерация костной ткани

Регенерация костной ткани – это биологический процесс обновления костных структур в организме, связанный с постоянным изнашиванием и гибелью клеток в тканях (физиологическая регенерация) либо с восстановлением целостности кости после повреждений (репаративная регенерация).

Физиологическая регенерация костной ткани характеризуется непрерывностью и постепенностью. Непрерывность означает то, что регенерация кости протекает на протяжении всей жизни биологического субъекта, а постепенность характеризуется растянутостью во времени процесса замены изношенных структур.

Для репаративной регенерации характерна фазовость в течение процесса восстановления тканей кости.

Основными структурами костной ткани, принимающими участие в регенерации, являются органическая строма (костный матрикс, имеющий белковое строение), минеральный компонент (гидроксиапатит, состоящий из солей кальция, фосфора и некоторых других), а также специфические клетки. Костный матрикс составляет 50% сухого веса кости и состоит из неорганической (50%), органической (25%) частей и воды (25%). Неорганическая часть в значительном количестве содержит два химических элемента – кальций и фосфор, образующие кристаллы гидросиапатита. Эти кристаллы имеют стандартный размер 20х5х1,5 нм и соединяются с молекулами коллагена. Органическая часть образована коллагеном (коллаген I типа 90–95%), неколлагеновыми белками и гликозаминогликанами. Органические вещества костного матрикса синтезируют остеобласты.

Костная ткань содержит в своем составе специфические остеогенные клетки, формирующие остеобластический и остеокластический клеточные диффероны.

Остеобластический клеточный дифферон (остеобласты и остеоциты) является создателем новой костной ткани. Предшественники остеобластов – стволовые стромальные клетки красного костного мозга, периваскулоциты кровеносных сосудов микроциркуляторного русла, клетки надкостницы и другие.

Остеобласты секретируют компоненты органического костного матрикса и начинают его минерализацию с отложения аморфного фосфата кальция. Остеоциты – окончательная стадия дифференцировки остеобластов. Они обеспечивают целостность костного матрикса и регулируют минерализацию костной ткани.

Клетки остеобластического дифферона воспринимают любые изменения упругого напряжения костной ткани (они чувствительны к пьезоэлектрическим токам), возникающие при деформации кости.

Таким образом, механическая нагрузка и возникающий при этомпьезоэлектрический эффект влияют на интенсивность остеогенеза, трансформируют механические стимулы в биохимические сигналы и инициируют процессы ремоделирования кости.

Остеокластический клеточный дифферон

Остеокласты – крупные многоядерные клетки, резорбирующие (разрушающее) костную ткань. Их предшественники – преостеокласты – циркулируют в крови в виде мононуклеарных клеток.

Структурно-функциональной единицей компактной кости является остеон, или гаверсова система.

Схема строения компактной части трубчатой кости

Остеон представляет собой систему из 3–20 и более концентрически расположенных костных пластинок вокруг центрального канала, в котором проходят сосуды микроциркуляторного русла. Трабекулы губчатого вещества построены из пластинчатой костной ткани и не имеют остеогенной организации.

Выделяют 3 вида репаративной регенерации костной ткани: по типу первичного, первично-задержанного и вторичного сращения костных отломков.

Для сращения костей по первичному типу, необходимы следующие условия: диастаз между отломками 50–100 мкм, полное обездвиживание сопоставленных фрагментов, хорошее кровоснабжение, а при использовании компрессионно-дистракционного остеосинтеза – компрессия между отломками средней величины (100-200 Н/см2). (Слабая компрессия(45-90 Н/см2) не обеспечивает достаточной неподвижности отломков и сращение идет по вторичному типу. Создание значительной компрессии (250-450Н/см2) приводит к уменьшению щели между отломками, резорбции их концов и замедлению образования костной мозоли).

При переломах, когда имеется диастаз, смещение и нестабильность между отломками, консолидация происходит путем вторичного сращения с образованием массивного костного регенерата (костной мозоли). Динамика остеорепарации в этом случае проходит ряд последовательных фаз.

Во время травмы в области перелома повреждаются все прилежащие ткани, нарушается кровообращение и в течение двух суток остеоциты в прилегающих участках остеонов по обе стороны от линии перелома гибнут. Образующиеся в зоне перелома продукты распада стромы являются одним из пусковых механизмов репаративной регенерации.

Между костными отломками и вокруг них образуется гематома. Одновременно происходит организация и образование соединительной ткани на месте существующей гематомы с первичным скреплением отломков. Происходит катаболизм тканевых структур с активным участием остеокластов.

Повреждённые участки кости подвергаются активной резорбции с обнажением органической стромы.

Далее начинается анаболическая фаза формирования первичного костного регенерата (костной мозоли), которая сопровождается образованием микрососудистого русла гематомы. Из сосудистого русла, костного мозга, эндоста, периоста, гаверсовых каналов в ткань гематомы и в ткани обнажённых остеокластами концов костных отломков проникают клетки остеобластического дифферона.

В этой фазе преимущественная роль отводится остеобластам. Между концами отломков постепенно формируется новая костная ткань – первичная костная мозоль. Вначале постепенно формируется периостальная часть костного регенерата, образуя к седьмым суткам отчетливую манжетку вокруг костных отломков, которая стабилизирует перелом.

И только затем происходит сращение непосредственно между костными фрагментами.

Скорость размножения остеогенных клеток превышает темпы роста кровеносных сосудов, что определяет дифференцировку остеогенных клеток в направлении образования хряща.

Так как кровоток недостаточен, то клетки центральных участков регенерата дифференцируются в устойчивую к гипоксии гиалиновую хрящевую ткань, которая в дальнейшем замещается губчатой костью.

Следующей после фазы образования мягкой костной мозоли, имеющей костную губчатую структуру, является реституция костной мозоли, которая заключается в перестройке губчатой ткани костной мозоли в компактную кость с формированием кортикального слоя, костных пластин и балок, костномозгового канала, утолщённого периоста.

Регенерация костной ткани: суть процесса

Стадии репаративной регенерации после перелома

Фаза реституции вдвое превосходит по времени фазу формирования первичной костной мозоли. Реституция диафизов длинных костей занимает более продолжительное время, в среднем в полтора-два раза большее, чем губчатой кости.

Различают следующие виды костной мозоли: периостальная мозоль образуется главным образом за счет надкостницы; эндостальная мозоль формируется со стороны эндоста; интермедиарная заполняет щель на стыке компактного слоя костных отломков; параоссальная формируется чаще всего в виде перемычки, перебрасывающейся между фрагментами кости над местом перелома.

Регенерация костной ткани: суть процесса

Варианты формирования костного регенерата(костной мозоли): 1 – периостальный, 2 – эндостальный,

3 – интермедиарный, 4 – параоссальный

Костная ткань: образование ткани, регенерация, восстановление

Кость — это плотная соединительная ткань. Основная функция костей — опорная. Кроме того, они служат резервуаром кальция. Костная ткань является прочной и твердой из-за определенного состава межклеточного вещества. Кость состоит по большей части из солей кальция и фосфора (на 70 процентов) и органических веществ: коллагена и протеогликана (на 30 процентов).

Образование костной ткани

Регенерация костной ткани: суть процессаКость является живой тканью, в которой находятся кровеносные сосуды, нервные окончания, она также принимает активное участие в обменных процессах организма. Кость — это постоянно обновляемая система. Примерно за десять лет у взрослого человека происходит практически полное обновление костной ткани (физиологическая регенерация костной ткани). Процесс жизнедеятельности костей состоит из двух процессов: образования новой кости и процесса разрушения старой (резорбция). Эти процессы зависят от деятельности клеток костной ткани: остеобластов, остеокластов и остеоцитов.

— остеобласты — клетки, которые отвечают за образование новой костной ткани;
— остеокласты — костные клетки-разрушители, которые участвуют в перестройке костей;
— остеоциты — клетки, которые поддерживают необходимый уровень кальцификации ткани и активируют остеобласты и остеокласты.

За счет этих клеток постоянно происходит процесс откладывания и вымывания из костей кальция и других минералов. Высвобождение кальция достигается путем разрушения (резорбция) костной ткани, а его связывание – путем образования костной ткани. Образование костной ткани является непрерывным процессом.

В юности преимущественно происходят процессы синтеза. Наращивается костная масса, интенсивно идет процесс минерализации.

Максимальные величины минеральной плотности наблюдаются к 30 годам, после они начинают уменьшаться.

Это естественный процесс, который связан с тем, что организм стареет, и с возрастом снижается скорость обменных процессов. Существует ряд причин, которые снижают плотность костной ткани:

  • плохое усвоение кальция и других минеральных веществ, участвующих в процессе регенерации костной ткани, в желудочно-кишечном тракте;
  • дефицит витамина D;
  • снижение уровня половых гормонов.

Восстановление и регенерация костной ткани

Как было упомянуто, процесс восстановления костной ткани зависит не только от кальция и фосфора, но и от выработки различных гормонов, а также витаминов и микроэлементов, принимающих участие в регенерации.

Кальций — это макро элемент. Его много в пище и воде. Однако, из-за нарушения работы желудочно кишечного тракта, может быть нарушено его усвоения.

Для нормализации работы ЖКТ лучше всего использовать лекарственные растения(девясил-п, календулу-п), а не ферментные препараты(мезим, фестал, панкреатин). Ферментные препараты подавляют выработку организмом собственных ферментов, что ведет к большому количеству других заболеваний.

Поэтому лучше использовать лекарственные растнения, а лучше комплексный препарат «мези-вит+» на основе корня девясила и витамина В6.

От выработки гормонов эстрогенов, тестостерона, глюкокортикоидов зависит остеогенез и обмен минералов. Эстрогены и тестостерон оказывают влияние на процесс образования остеобластов.

Влияние гормонов на костную ткань

Гормон тестостерон оказывает прямое анаболизирующее действие на костную ткань. Чем выше уровень гормона тестостерона , тем больше в костной ткани протекают процессы рождения клеток кости.

В присутствии тестостерона клетка кости начинает процесс деления. Этим объясняется то, что мужчины имеют более крепкие кости чем женщины, так как уровень тестостерона у мужчин приблизительно в 10-20 раз больше чем у женщин.

Эстрогены оказывают не прямое анаболизирующее действие на костную ткань.

Эстрогены усиливают рецепторы костных клеток к тестостерону, т.е. повышают чувствительность костных клеток к циркулирующему в организме тестостерону. Заставляя тем самым клетки делиться. Этим объясняется факт того, что назначение заместительной гормональной терапии в период климакса у женщин укрепляет костную ткань.

Однако искусственное повышение эстрогенов вызывает гиперпластические изменения в матке, тромбозы, онкологию. Поэтому , мы не рекомендуем назначение эстрогенов. Еще одна функция эстрогенов — это торможение функции остеокластов.

Эстрогены уравновешивают баланс между остеобластами и остеокластами, а также влияют на активность клеток костной ткани и регулируют процесс запрограммированной гибели клеток (апоптоз), поэтому когда снижается уровень эстрогенов после менопаузы у женщин и уровень тестостерона у мужчин пожилого возраста, нарушаются процессы восстановления костной ткани, и, как следствие, снижается ее биохимическая прочность и появляется склонность к переломам.

Использование для лечения низкой плотности кости препаратов кальция и витамина D

Такое лечение является малоэффективным, а также опасным, из-за риска отложения кальция в мягкие ткани(мозг, сосуды, почки, мышцы). Кальций могут усваивать только вновь рожденные клетки кости.

Когда клетка кости рождается, то она до 100 раз может увеличить свой объем за счет набухания кальцием. Однако с возрастом уровень тестостерона снижается , поэтому процесс деления клеток идет слабо.

Читайте также:  Острый лимфобластный лейкоз у детей: прогноз и симптомы

Клетка кости живет в среднем около полугода. Когда клетка кости умирает, то остеокласт начинает ее разбирать, для того чтобы в дальнейшем остеобласт на ее месте построил новую клетку кости. При понижении тестостерона в костной ткани появляется эффект вымирающей деревни. Мужиков нет, бабам не от кого беременеть и рожать. Клетки кости умирают, а новые не рождаются.

Кальций из умерших клеток опять выводится в кровь для построения новых клеток. Если новая клетка кости не родилась, то не родился и потребитель кальция. Поэтому организм старается вывести излишний кальций из организма. Для этого он в первую очередь закрывает сфинктеры кишечника, чтобы те не засасывали кальций из пищи.

Именно поэтому кальций перестает усваиваться из пищи.

Применение витамина Д3 приводит к насилию над организмом. Витамин Д3 — открывает закрытые сфинктеры кишечника, и кальций начинает поступать в организм. Но кто будет являться потребителем этого кальция? Клетки кости, которые могут впитывать кальций — не родились. Поэтому весь насильно усвоенный кальций начинает оседать в мягких тканях.

Именно поэтому кардиологи ставят прямую связь между развитием остеопороза и атеросклерозом сосудов. Излишне усвоенный кальций откладывается на стенках сосудов, появляется неровность, которая тут же заделывается организмом с помощью холестерина.

Поэтому, принимая препараты кальция+ витамин Д3 , человек подвергается риску развития сердечно-сосудистых заболеваний.

Костная ткань нуждается в легкоусвояемом кальции

В связи с этим нет смысла принимать препараты кальция и витамина Д3, если уровень тестостерона в организме низок .

Так как только тестостерон принимает непосредственное влияние на усвоение препаратов, которые восстанавливают плотность костной ткани, поэтому для восстановления костной ткани необходимо комплексное лечение.

Вместе с применением препаратов кальция важно восстановить нормальный уровень тестостерона.

С данной задачей справиться поможет препарат «Остеомед» производства ООО «Парафарм», в состав которого входит трутневый расплод, являющийся донатором половых гормонов.

«Остеомед» содержит кальций в легкоусвояемой форме. «Остеомед» восполняет дефицит кальция в организме. Соединения кальция обеспечивают его дополнительное поступление, а трутневый расплод удерживает его и поддерживает уровень андрогенов (мужских половых гормонов), благодаря чему кальций используется по назначению.

Также состояние метаболизма костной ткани во многом зависит от тиреоидных гормонов, которые стимулируют остеокласты. При повышенной функции щитовидной железы ускоряется процесс ремоделирования костей, при этом повышаются скорости резорбции и костеобразования.

Преобладание процесса резорбции костной ткани над костеобразованием отрицательно влияют на кальциевый баланс и уменьшают массу кости.

Нормализовать функцию щитовидной железы поможет препарат «Тирео-Вит», содержащий в своем составе лапчатку белую, благотворно влияющую на работу щитовидной железы.

Компания «Парафарм» желает Вам крепкого здоровья.

Регенерация костной ткани: суть процесса

  • Вред излишнего кальция в сосудах, новинка в области процесса формирования кости
  • Как выявить остеопороз? Хрупкость костей как признак остеопороза
  • Синдром гиперминерализации костной ткани
  • Частые переломы костей: признаки и виды
  • Чем грозят заболевания щитовидной железы

Регенерация костной ткани (сращение переломов)

Есть два вида регенерации – физиологическая и репаративная. Под физиологической регенерацией понимают восстановление тканевых структур здорового организма по мере их старения и отмирания.

Наглядным примером этого является кожа — постоянное отслоение и отшелушивание эпидермиса.

Физиологическая регенерация — это постоянный и очень медленный процесс, который не вызывает стрессовой ситуации в организме.

Регенерация костей: основные сведения

Репаративная регенерация — это восстановление поврежденной или потерянной ткани. Степень и качество регенеративного процесса в различных тканей различна.

Чем выше дифференцировки ткани (нервная, мышечная), тем меньше у нее способность к восстановлению своей структуры. Поэтому анатомическое восстановление поврежденного участка происходит за счет замещения дефекта соединительной тканью — рубцом.

Поврежденая костная ткань способна пройти ряд стадий репаративного процесса и восстановить свою анатомическую форму, гистологическую структуру и функциональную пригодность.

Перелом кости сопровождается повреждением прилежащих мягких тканей и вызывает стрессовую ситуацию, которая сопровождается местной и общей реакциями организма. В процессе восстановления костной ткани происходят сложные общие и местные биологические и биохимические изменения, которые зависят от кровоснабжения кости, возраста больного, общего состояния организма, а также качества лечения.

Регенерация костной ткани: суть процесса

Источники регенерации

Восстановление целостности кости происходит путем пролиферации клеток остеогенного слоя надкостницы, эндоста, недостаточно дифференцированных плюрипотентных клеток костного мозга, а также вследствие метаплазии гиараосальних тканей.

Современные представления о процессах регенерации костной ткани сочетают концепции неопластической и метапластическая теорий. Преостеогенными клетками считают остеобласты, фибробласты, остеоциты, перициты, гистиоциты, лимфоидные, жировые и эндотелиальные клетки, клетки миелоидного и эритроцитного рядов.

При сращения сломанных костей установлена ​​стадийность репаративного остеогенеза, которая имеет условный характер. Деление на стадии не имеет принципиального значения, поскольку они в динамике перекрываются.

Даже при идеальной репозиции и фиксации отломков дифференцировки различных клеток происходит одновременно, и поэтому стадийность репаративного процесса трудно разграничить. Но для выбора оптимальной тактики лечения больных нужно иметь представление о закономерностях репаративного остеогенеза.

Стадии репаративного остеогенеза

Стадия катаболизма тканевых структур и клеточной инфильтрации. По сравнению с воспалением это стадия альтерации (разрушение). После травмы возникают омертвения поврежденных тканей и распад клеточных элементов гематомы.

Организм человека немедленно реагирует на травму местной фагоцитарной реакцией.

Наряду с этим продукты распада, которые являются генетическими индукторами, вместе с гормонами обусловливают репродукцию и пролиферацию различных специализированных клеток (остеоциты, гистиоциты, фиброциты, лимфоидные, жировые и эндотелиальные клетки), то есть мелкоклеточная инфильтрацию, которая длится 6—10 дней.

Стадия дифференцировки клеток длится 10—15 дней. В основном ДНК и РНК, а также анаболические гормоны направляют дифференцировку клеток прогрессирующего мелкоклеточного инфильтрата. Одновременно происходит три типа дифференцировки клеток: фибробластические, хондроидные и остеогенные. Это зависит от условий, при которых происходит репаративный процесс.

При идеальных репозиции и фиксации отломков и достаточном кровоснабжении (применение аппаратного остеосинтеза т.д.) сращение происходит по типу первичного остеогенеза.

Дифференцировка большинства клеток сразу направлена на образование остеоидной ткани.

Когда фиксация ненадежна или недостаточное кровоснабжение отломков вследствие тяжелых повреждений, дифференцировки клеток происходит путем фиброгенеза с последующей метаплией в хрящевую и костную ткани.

Стадия формирования первичного остеона — образование ангиогенной костной структуры — происходит в течение 16—21 дней. Характеризуется она тем, что возникает полная реваскуляризадия первичной мозоли.

Регенерат прорастает капиллярами и начинается минерализация его белковой основы.

Появляется мелкопетличная, хаотично ориентирована сетка костных трабекул, которые постепенно сливаются с образованием первичного остеона и гаверсовых канальцев.

Стадия перестройки первичного регенерата или спонгиозации мозоли, — это та стадия, на которой формируется пластинчатая костная ткань.

Во время перестройки первичного регенерата костный пластинчатый остеон набирает ориентации над силовыми линиями нагрузки, появляется корковое вещество кости, надкостницы и восстанавливается костно-мозговая полость. Части регенерата, которые за нагрузкой, рассасываются.

Все это приводит к полному восстановлению структуры и функции переломанной кости. В зависимости от локализации перелома процесс перестройки и восстановления может длиться от нескольких месяцев до 2—3 лет.

  • Итак, из закономерностей репаративной регенерации костной ткани вытекают следующие практические выводы:
  • 1) идеальной репозиции и фиксации костных отломков следует добиваться быстрее, к тому же не позднее, чем начнется стадия дифференцировки клеток;
  • 2) поздняя репозиция, любое вмешательство с целью коррекции отломков ведут к повторному разрушению капилляров регенерата и нарушению репаративного остеогенеза;
  • 3) стимулятором образования пластинчатой ​​кости в процессе перестройки первичного регенерата является функциональная нагрузкп, о которой следует помнить при лечении больных.

Теоретически различают три вида репаративной регенерации костной ткани — первичная, первично-замедленная и вторичное сращение.

Первичное сращение костей происходит в течение короткого времени первичным остеогенезом за счет образования интермедиарной мозоли. Но для этого следует  создать все условия.

Прежде всего это наблюдается при забойных и компрессионных переломах костей, часто после идеальной репозиции (диастаз между отломками 50—100 мкм) и надежной фиксации отломков.

Первично-замедленное сращение бывает тогда, когда между неподвижными отломками нет щелей, сращения проходит только по сосудистым каналам (интраканаликулярный остеогенез), т.е.

возникает частичное сращение, а полному межкостному сращиванию предшествует резорбция концов отломков.

Но с практической точки зрения этот вид репарации следует расценивать как положительный, и поэтому клиницисты придерживаются разделения на два вида восстановления кости — первичное и вторичное.

Вторичное сращение переломанных костей происходит за счет образования менее полноценных видов мозоли — периостальной, эндостальной и параосальной (гематома, мягкие ткани).

Образованием избыточной периостальной и параосальной мозоли организм пытается компенсировать фиксацию отломков, которой не сделал врач. Это природный саногенез организма. В этом случае срок сращения кости значительно увеличивается. По характеру мозоли на рентгенограмме можно сразу оценить качество лечения больного. Чем больше мозоль, тем хуже была фиксация отломков.

Вторичное сращение кости сравнивают с заживлением ран мягких тканей. Но в заживлении поражения двух тканей принципиальная разница.

Заживление раны мягких тканей, происходит вторичным натяжением, заканчивается образованием рубца, в то время как при переломе кости в процессе репарации все костные клетки проходят стадию метаплазии, что заканчивается образованием полноценной кости.

Однако для того чтобы кость срослась вторично, необходима также надежная фиксация отломков. Если ее не будет, то клетки пройдут стадии фибро- и хондрогенеза, перелом заживет, но кость не срастется.

Вопрос о стимуляции репаративного остеогенеза в теоретическом плане остается нерешенным. Попытки ускорить регенерацию костной ткани уже были давно, и сейчас не уменьшается количество поисков.

Средства стимуляции остеорепарации

1) механические (раздражение периоста постукиванием молоточком по месту перелома, локальный массаж, дозированная нагрузка конечности, управляемое динамическая нагрузка сегмента конечности аппаратом Пустовойта т.п.);

2) физические (ИК, УВЧ—излучения, диатермия, электрофорез лекарств, ультразвуковая, лазерная, магнитная терапия, оксибаротерапия, электростимуляция и т.д.);

3) медикаментозные (метионин, цистеин, карбоксилин, витамины, нуклеиновые кислоты, ретаболил, тиреокальцитонин, кальцитрин, экзогенная гомологична РНК, мумие и т.д.);

4) биологические (локальные инъекции аутокрови, некрогормонотерапия, экстракты органов и тканей по И. Л. Зайченко, использование переходного эпителия мочевых путей, декальцинованого матрикса и молотой кости, костного трансплантата и т.д.).

Следует отметить, что некоторые средства стимуляции (лазерная, магнитная терапия и др.) И ныне еще ​​не имеют полного теоретического обоснования, хотя эмпирически доказано их положительное влияние на срастание костей.

Применение стимулирующих средств в зависимости от их целенаправленного действия следует связывать со стадией репаративного процесса в кости. Например, сначала назначают такие средства, которые способствуют обменным процессам, клеточной инфильтрации и дифференцировке клеток.

На стадии формирования пластинчатой ​​кости важен выбор оптимальной нагрузки костного сегмента.

Следует помнить, что сращиванию перелома кости помогает комплекс благоприятных факторов, но в условиях идеальной репозиции отломков, надежной их фиксации, полноценного питания и нормального обмена веществ. Если этого не будет, то репаративный процесс нарушается, и кость может не срастись независимо от вида стимулирования.

Читайте также:  Лимфома легких: что это такое, симптомы и прогноз

Репаративная регенерация костной ткани

Регенерация костной ткани может быть физиологической и репаративной. Физиологическая регенерация заключается в перестройке костной ткани, в процессе которой происходит частичное или полное рассасывание костных структур и создание новых. Репаративная (восстановительная) регенерация наблюдается при переломах костей.

Этот вид регенерации является истинным, так как образуется нормальная костная ткань.

Восстановление целостности поврежденной кости происходит путем пролиферации клеток камбиального слоя надкостницы (периоста), эндоста, малодифференцированных плюрипотентных клеток стромы костного мозга, а также в результате метаплазии малодифференцированных мезенхимных клеток параоссальных тканей.

Последний вид репаративной регенерации костной ткани наиболее активно проявляется за счет мезенхимных клеток адвентиции врастающих кровеносных сосудов.

По современным представлениям, остеогенными клетками-предшественниками являются остеобласты, фибробласты, остеоциты, парациты, гистиоциты, лимфоидные, жировые и эндотелиальные клетки, клетки миелоидного и эритроцитарного ряда.

В гистологии принято называть костеобразование, возникающее на месте волокнистой соединительной ткани, десмальным; на месте гиалинового хряща — энхондральным; в области скопления пролиферирующих клеток скелетогенной ткани — костеобразованием по мезенхимному типу.

Повреждение костной ткани сопровождается общими и местными изменениями после травмы; посредством нейрогуморальных механизмов в организме включаются адаптационные и компенсаторные системы, направленное на выравнивание гомеостаза и восстановление поврежденной костной ткани. Образующиеся в зоне перелома продукты распада белков и других составных частей клеток являются одним из пусковых механизмов репаративной регенерации. Среди продуктов распада клеток наибольшее значение имеют химические вещества, обеспечивающие биосинтез структурных и пластических белков. В последние годы доказано (А. А. Корж, А. М. Белоус, Е. Я. Панков), что такими индукторами являются вещества нуклеиновой природы (рибонуклеиновая кислота), которые влияют на дифференцировку и биосинтез белков в клетке.

В механизме репаративной регенерации костной ткани выделяют следующие стадии:

1) катаболизм тканевых структур, дедифференцирование и пролиферация клеточных элементов; 2) образование сосудов; 3) образование и дифференцирование тканевых структур; 4) минерализация и перестройка первичного регенерата, а также реституция кости.

В зависимости от точности сопоставления отломков костей, надежного и постоянного их обездвиживания, при сохранении источников регенерации и прочих равных условиях наблюдаются различия в васкуляризации костной ткани. Выделяют (Т. П. Виноградова, Г. Н. Лаврищева, В. И. Стенула, Э. Я.

Дубров) 3 вида репаративной регенерации костной ткани: по типу первичного, первично-задержанного и вторичного сращения костных отломков. Сращение костей по первичному типу происходит при наличии небольшого диастаза (50— 100 мкм) и полном обездвиживании сопоставленных отломков костей.

Сращение отломков наступает в ранние сроки путем непосредственного формирования костной ткани в интермедиарном пространстве.

В диафизарных отделах костей на раневой поверхности отломков образуется скелетогенная ткань, продуцирующая костные балки, что приводит к возникновению первичного костного сращения при малом объеме регенерата. При этом в регенерате на стыке костных концов не отмечается образования хрящевой и соединительной тканей. Такой вид сращения костей, с образованием минимальной периостальной мозоли, когда соединение отломков происходит непосредственно за счет костных балок, является наиболее совершенным. Этот вид сращения может наблюдаться при переломах без смещения отломков, под надкостничных переломах у детей, применении прочного внутреннего и чрескостного компрессионного остеосинтеза. Первично-задержанный тип сращения имеет место при отсутствии щели между прочно фиксированными неподвижными костными отломками и характеризуется ранним, но лишь частичным сращением в области сосудистых каналов при внутриканальном остеогенезе. Полному интермедиарному сращению отломков предшествует резорбция их концов. При вторичном типе сращения, когда вследствие неудовлетворительного сопоставления и фиксации отломков имеются подвижность между ними и травматизация новообразованного регенерата, костная мозоль формируется главным образом со стороны периоста, проходя десмальную и энхондралъную стадии. Периостальная костная мозоль обездвиживает отломки, и только затем происходит сращение непосредственно между ними. Степень фиксации отломков костей определяется соотношением величины смещающих усилий и усилий, препятствующих этому смещению (В. И. Стецула). Если избранный метод фиксации отломков костей обеспечит полное сопоставление отломков, восстановление продольной оси кости, а также преобладание сил, препятствующих их смещению, фиксация будет надежной. Для сохранения в период формирования сращения постоянной неподвижности на стыке отломков необходимо применять средства фиксации, позволяющие создать значительное превышение величины устойчивости отломков над смещающими усилиями. Запас устойчивости отломков дает возможность рано приступить к активной функции и нагрузке на конечность. Сдавление отломков между собой (компрессия) непосредственно не стимулирует репаративную регенерацию, а усиливает степень обездвиживания, чем способствует более быстрому образованию костной мозоли. В зависимости от степени сдавления отломков, по данным В. И. Стецулы, репаративная регенерация костной ткани протекает различно. Слабая компрессия (45 — 90 Н/см2) не обеспечивает достаточной неподвижности отломков, сращение отломков и сроки его приближаются к вторичному типу. Создание значительной компрессии (250 — 450 Н/см2) приводит к уменьшению щели между отломками и резорбции их концов, к замедлению образования костной мозоли между ними. В этом случае регенерация протекает по типу первичнозадержанного сращения. Наиболее оптимальные условия для репаративной регенерации костной ткани создаются при компрессии средней величины (100 — 200 Н/см2). Процесс восстановления костей после травмы определяется целым рядом факторов. У детей сращение костей происходит быстрее, чем у взрослых. Имеют значение анатомические условия (наличие надкостницы, характер кровоснабжения), а также тип перелома. Косые и винтообразные переломы срастаются быстрее, чем поперечные. Благоприятные условия для сращения костей создаются при вколоченных и поднадкостничных переломах.

Уровень репаративной регенерации костной ткани во многом определяется степенью травматизации тканей в области перелома: чем больше повреждены источники костеобразования, тем медленнее протекает процесс образования костной мозоли. Учитывая последнее обстоятельство, при лечении переломов следует отдать предпочтение методам, не связанным с нанесением дополнительной травмы в области перелома, а оперативные вмешательства не должны быть травматичными.

В формировании костной мозоли большое значение имеет и соблюдение механических факторов: точного сопоставления, создания контакта и надежного обездвиживания отломков. При остеосинтезе основным условием для сращения костей является неподвижность отломков.

При наружном чрескостном остеосинтезе за счет сдавления и фиксации на протяжении отломков костей спицами, закрепленными в аппарате, на стыке отломков создаются неподвижность и оптимальные условия для формирования первичного костного сращения. На стыке костных отломков формирование сращения начинается с образования эндостального костного сращения, периостальная реакция появляется значительно позже. Точная репозиция и стабильная фиксация отломков аппаратом создают условия к компенсации внутрикостного и местного кровотока, а ранняя нагрузка способствует нормализации трофики. При дистракции вначале возникают условия для формирования костного регенерата между медленно растягиваемыми отломками, а затем формируется костное сращение на стыке регенератов (В. И. Стецула). Установлено, что при дистракции возникает локальный остеопороз, при компрессии этого не наблюдается. Обездвиживание отломков достигается жесткостью аппарата, а также натяжением тканей, связывающих отломки, и мышечных футляров. В этих условиях запас устойчивости отломков возрастает до величин, необходимых для создания постоянной неподвижности и завершения «вторичной» оссификации регенерата. При дистракции условия формирования между отломками вторичного костного сращения создаются в результате непосредственного обездвиживания костных отломков и «репаративного остеогенеза». В метаэпифизарных отделах костей, имеющих хорошее кровоснабжение, при прочном компрессионном остеосинтезе в короткие сроки происходит сращение по всей площади соприкосновения отломков. При диафизарных переломах репаративная реакция начинается в отдалении от места перелома, а на месте перелома появляется с восстановлением кровоснабжения. Вначале формируется эндостальное, а затем, несколько позже, периостальное сращение. Интермедиарное сращение образуется после восстановления кровоснабжения и расширения сосудистых каналов в концах отломков, в которых формируются новые остеоны (В. И. Стецула). При косых и винтообразных диафизарных переломах с хорошо сопоставленными отломками, когда сохраняется непрерывность костного мозга и внутрикостных сосудов, непосредственно в зоне перелома формируется быстрое костное сращение. При дистракции оптимальные условия для репаративной регенерации костной ткани создаются в условиях неподвижности отломков и медленной дистракции. При несоблюдении этих условий диастаз заполняется волокнистой соединительной тканью, постепенно превращающейся в фиброзную ткань, а при выраженной подвижности отломков образуется также хрящевая ткань и формируется ложный сустав. При дозированной дистракции и неподвижности отломков диастаз между костными концами заполняется низкодифференцированной скелетогенной тканью, образующейся в условиях пролиферации стромы костного мозга. Новообразование костных балок появляется на обоих отломках, продолжается весь период дистракции на вершинах костной части регенерата, соединенных между собой коллагеновыми волокнами. С увеличением диастаза и созреванием обеих костных частей регенерата процесс новообразования продолжается на границе с соединительнотканной прослойкой путем отложения костного вещества на поверхности пучков коллагеновых волокон (десмальная оссификация). Увеличение размеров регенерата в процессе его удлинения происходит за счет новообразования коллагеновых волокон в самой соединительнотканной прослойке; соединительнотканная прослойка в дистракционном регенерате выполняет функцию «зоны роста» (В. И. Стецула). После прекращения дистракции, при условии сохранения неподвижности отломков, фиброзная прослойка на стыке костных регенератов подвергается путем десмальной оссификации замещению костной тканью и последующей органной перестройке. В процессе лечения органной перестройке костной ткани и минерализации способствует дозированная нагрузка на конечность. При отсутствии неподвижности отломков процесс оссификации соединительнотканной прослойки резко задерживается и на границе ее с костными частями регенерата формируются замыкающие пластинки. При выраженной неподвижности отломков наступает частичная резорбция концов костных регенератов с замещением фиброзной тканью, может образоваться ложный сустав.

При удлинении различных сегментов конечностей и при разных уровнях остеотомии процесс формирования регенерата и перестройка его протекают однотипно.

Однако в зависимости от уровня пересечения кости дистракцию начинают не сразу после операции, а только после соединения костных отломков новообразованной соединительной тканью.

При вмешательстве на уровне метафиза ее начинают после операции через 5 — 7 дней, а диафиза — через 10—14 дней.

С помощью аппаратов оказалось возможным постепенное разъединение на уровне зоны роста эпифиза и метафиза костей. Такой способ удлинения трубчатых костей получил название дистракционного эпифизеолиза.

При дистракционном эпифизеолизе формирование регенерата протекает неодинаково. Чем крупнее участок кости, отрывающийся с зоной роста при остеоэпифизеолизе, тем активнее протекает репаративная регенерация костной ткани.

Когда с пластинкой роста отрывается небольшое количество костной ткани, диастаз в основном заполняется регенератом, образующимся со стороны метафиза.

Формирование костного регенерата на месте удлинения происходит также со стороны надкостницы и эпифиза.

Ссылка на основную публикацию